a) Prove that cos 3A = 4cos^3 A - 3 cos A b) Hence, find the value of sin 18 in surd form. (8 Marks)
a)cos (A+2A) =cos A cos 2A - sin A sin2A =cos A (2cos² A - 1)- sinA 2sinA cosA =2cos³A - cos A - 2sin² A cos A =2cos³A - cos A - 2(1-cos²A)cos A =2cos³A - cos A - 2cosA + 2cos³A =4cos³A - 3cosA
b) Let A = 18˚ sin 2A =sin(90˚-3A) sin 2A =cos 3A sin 2A=4cos³ A-3cos A 2sin A cos A= 4cos³A-3cosA 2sin A=4cos²A-3 2sin A=4(1-sin²A)-3 2sin A=1-4sin²A 4sin²A+2sinA-1=0 sinA={-2±√(2²-4(4)(-1)}/8 sinA=(-2±√20)/8 sinA=(-1±2√5)/4
sin A = (-2 ± √20) / 8 = (-2 ± 2√5) / 8 = (-1 ± √5) / 4
note that marks will be deducted if u don't check ur ans this is not just only a quad. eqt. sin 18˚ ≧ 0 sin A = (-1 - √5) / 4 is rejected. sin A = (√5 - 1) / 4