第一題用completing square 令到可以變成(x+p)^2+q x^2+4x-1 =x^2+4x+2^2-5 =(x+2)^2-5 p=2,q=-5
(1) If x^2+4x-1 is identical to (x+p)^2+q, find the values of p and q. 我可否用以下方法來計算呢? x^2+4x-1 ≡ (x+p)^2+q x^2+4x+4 ≡ (x+p)^2+q+5 (x+2)^2 ≡ (x+p)^2+q+5 (x+2)^2-5 ≡ (x+p)^2+q Therefore, (x+2)^2 = (x+p)^2 and q = -5 Therefore, p=2 and q=-5 你這個答案有點問題 這樣會好D↓
x^2+4x-1 ≡ (x+p)^2+q x^2+4x+4-5 ≡ (x+p)^2+q (x+2)^2-5 ≡ (x+p)^2+q (x+2)^2-5 ≡ (x+p)^2+q 第二題
(2) Rationalize the denominators. a. √6/(2√3) b. 1/(√2+1) c. √3/(√2+1) d. (5√2)/(√3-√2) a. √6/(2√3) =√(2x3) /(2√3) =√2√3 /(2√3) =√2/2 b. 1/ (√2+1) =(√2-1) / (√2+1)(√2-1) =(√2-1)/1 =√2-1 c. √3/(√2+1) =√3(√2-1) / (√2+1)(√2-1) =√3(√2-1) / 1 =√3(√2-1) d. (5√2)/(√3-√2) =(5√2)(√3+√2) / (√3-√2)(√3+√2) =5√6 + 10 /1 =5√6 + 10 有冇錯..﹖ |