香港寵物小精靈村落 論壇

 找回密碼
 加入
樓主: Sunny
打印 上一主題 下一主題

中一數學問題

[複製鏈接]
11#
發表於 7/8/2007 05:53 PM | 只看該作者
1.證明 53^103+103^53 能被39整除。


Rewrite the question as
53^103 + 103^53 = a (mod 39)

=>
{53^103 + 103^53 = a (mod 3)
{53^103 + 103^53 = a (mod 13)

=>
{ (-1)^103 + (1)^53 = a (mod 3)
{ (1)^103 + (-1)^53 = a (mod 13)

=> a=0

therefore, 53^103+103^53 is divisible by 39

3.若792能整除整數 13xy45z ,求數位x、y及z。


Rewrite the question as
13xy45z = 0 (mod 792)

=>
{13xy45z = 0 (mod 2)
{13xy45z = 0 (mod 3)
{13xy45z = 0 (mod 11)

=>
{z is an even number
{1+3+x+y+4+5+z = 3a , where a is an integer
{z-5+4-y+x-3+1 = 0

=>
{z is an even number  ...(1)
{ x+y=-13-z+3a  ...(2)
{ x-y = 3-z  ...(3)

By putting a=0,1,2,3,... and z=0,2,4,6,8
Solving (1) (2) & (3)
We have
(x,y,z) = (4,1,0) (2,1,2) (0,1,4) (7,4,0) (5,4,2) (3,4,4) (1,4,6) (8,7,2) (6,7,4) (4,7,6) (2,7,8)


5.利用模 9 (modulo 9)或模 11 (modulo 11)協助,求以下算式中的未知的數位:

(a)51840 × 273581 = 1418243y040

(b)512 × 1y53125 = 1000000000


改了用 y ...易看一些

(a)
273581 = 0 (mod 11)
=> 51840 × 273581 = 0 (mod 11)
=> 1418243y040 = 11a (mod 11) , where a is an integer
=> 0-4+0-y+3-4+2-8+1-4+1 = 11a
=> -13 - y = 11a
=> y = 9 (put a = -2)

(b)
1000000000 = 10 (mod 11)
512 × 1y53125 = 6(7-y) (mod 11)
=> 6(7-y) = 10+11a , where a is an integer
=> y = 9 (put a = -2)


--------------------------------------
To be continued...

[ 本帖最後由 kazuhiko 於 7/8/2007 06:25 PM 編輯 ]

評分

參與人數 1金幣 +10收起 理由
ting+ 10熱心解答他人問題

查看全部評分

回復

使用道具 舉報

12#
 樓主| 發表於 7/8/2007 09:31 PM | 只看該作者
辛苦大家了
可以不用提供answers了
已經解決了
回復

使用道具 舉報

您需要登錄後才可以回帖 登錄 | 加入

本版積分規則

手機版|Archiver|香港寵物小精靈村落

GMT+8, 22/11/2024 09:47 PM , Processed in 0.012362 second(s), 13 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表