我無聊地兜左勁大個圈最後用MI黎prove 不過我無視去到99為止 當佢去到無限 (因為事實上個statement去到無限大都岩) 純粹無聊得濟玩野- - 唔好插我唔該... 我一開波既idea係 只要prove到5+13+25+...+4+12+24+... =3^2+5^2+7^2+.....就ok consider the series 4+12+24+... It can be written as 4*1+(4*1+4*2)+(4*1+4*2+4*3)+... =4(1+1+2+1+2+3+...+1+......) Consider the sequence 1+2+3+.....+n Let n be the no.of the terms General term (An) = 1+(n-1)1=n-------------(^) <By An=a+(n-1)d So, 4+12+24+.. =4(1+1+2+1+2+3+...+1+2+3......n) (by (^), general term (An)=n) 5+13+25+... =4+12+24+...+n =4(1+1+2+1+2+3+...+1+2+3......n)+n (since there are n terms in the series) Then 4+12+24+...+5+13+25+... =4(1+1+2+1+2+3+...+1+2+3......49)+4(1+1+2+1+2+3+...+1+2+3......n)+n =2*4(1+(1+2)+(1+2+3)+...+(1+2+3......n))+n =8(1+(1+2)+(1+2+3)+...+(1+2+3......n))+n We are going to use MI to prove for the truth of the statement. 8(1+(1+2)+(1+2+3)+...+(1+2+3+...+n))+n =3^2+(3+2)^2+(3+2+2)^2+...(3+2n-2)^2 <BY An=a+(n-1)d, in the sequence 3,5,7,...n , An=(3+(n-1)2)=3+2n-2 Put n=1 LHS=8(1)+1=9 RHS=3^2=9 The1st equ is true Assume that the k th equ is true. 8(1+(1+2)+(1+2+3)+...+(1+2+3+...+k))+k=3^2+(3+2)^2+(3+2+2)^2+... (3+2k-2)^2 To show it gives (k+1)th equ 8(1+(1+2)+...+k(k+1)/2+(k+1)(k+1+1)/2)+k+1) =3^2+(3+2)^2+(3+2+2)^2...+(3+2k-2)^2+(3+2(k+1)-2)^2---------(*) Add 8(k+1)(k+1+1)/2+1 both sides 8(1+(1+2)+...+k(k+1)/2)+k+1 =3^2+(3+2)^2+(3+2+2)^2+...(3+2k-2)^2+8(k+1)(k+1+1)/2+1 =3^2+(3+2)^2+(3+2+2)^2+...(3+2k-2)^2+4(k^2+3k+2)+1 =3^2+(3+2)^2+(3+2+2)^2+...(3+2k-2)^2+4k^2+12k+9 =3^2+(3+2)^2+(3+2+2)^2+...(3+2k-2)^2+(2k+3)^2 =3^2+(3+2)^2+(3+2+2)^2+...(3+2k-2)^2+(3+2(k+1)-2)^2 =(*) By MI,the equ is true for n=1,2,3...... [ 本帖最後由 Dragonite 於 4/7/2007 15:40 編輯 ] |