香港寵物小精靈村落 論壇

 找回密碼
 加入
查看: 2328|回復: 15
打印 上一主題 下一主題

A.Maths. Exam

 關閉 [複製鏈接]
跳轉到指定樓層
1#
發表於 27/10/2004 04:11 PM | 只看該作者 回帖獎勵 |正序瀏覽 |閱讀模式
help!
tomolo A.Math Exam la~~
i have some question don't know how to do!~

help~~~~~~~~~~~

1.Convert the expresion x^2-4n+1 into the form (x+a)^2 +b and write down the values of a and b in terms of n.

[ Last edited by smallpotato226 on 2004-10-27 at 04:12 PM ]
16#
發表於 30/10/2004 05:52 PM | 只看該作者
落雷  在 2004-10-29 10:46 PM 發表:

Let f(x) = (16-k)x^2 +12x -k , where k is a constant.
a) Find the discriminant of f(x)=0 .
b) Find the condition of k such that f(x)≧0 for all real values of x .


a) Δ = b<sup>2</sup> - 4ac
       = 12<sup>2</sup> - 4(16-k)(-k)
       = 144 + 64k - 4k<sup>2</sup>

b) As f(x) ≧ 0, Δ ≦ 0 and 16-k > 0
                      144 + 64k - 4k<sup>2</sup>≦0 and k<16
                      k<sup>2</sup> - 16k - 36 ≧ 0 and k<16
                      (k - 18)(k + 2) ≧ 0 and k<16
                      (k ≦ -2 or k ≧ 18) and k<16
                   ∴k ≦ -2

see if sth wrong @@~
回復

使用道具 舉報

15#
 樓主| 發表於 30/10/2004 09:27 AM | 只看該作者
fish  在 2004-10-29 10:49 PM 發表:

afriad<----afraid ....."


改了.......(成日錯><)
回復

使用道具 舉報

14#
發表於 29/10/2004 10:49 PM | 只看該作者
smallpotato226  在 2004-10-28 01:06 PM 發表:

don't be afriad~
i have typed the correct question!

does anyone have the A.Maths Textbook of the name called "New Trend Additional Mathematics Volume One"??
my question is come from  ...


afriad<----afraid ....."
回復

使用道具 舉報

13#
發表於 29/10/2004 10:46 PM | 只看該作者
Let f(x) = (16-k)x^2 +12x -k , where k is a constant.
a) Find the discriminant of f(x)=0 .
b) Find the condition of k such that f(x)≧0 for all real values of x .
回復

使用道具 舉報

12#
 樓主| 發表於 28/10/2004 01:06 PM | 只看該作者
落雷  在 2004-10-27 07:01 PM 發表:

I'm afraid you of wrong typing of queation


don't be afraid~
i have typed the correct question!

does anyone have the A.Maths Textbook of the name called "New Trend Additional Mathematics Volume One"??
my question is come from P.6 , Classwork 5

++++++++++++++++++++++++++++++++++++++++++++++
testing

5<SUP>2</SUP>

haha~~funny~qq~XDD

[ Last edited by smallpotato226 on 2004-10-30 at 09:27 AM ]
回復

使用道具 舉報

11#
發表於 27/10/2004 08:23 PM | 只看該作者
回復

使用道具 舉報

10#
發表於 27/10/2004 08:12 PM | 只看該作者
回復

使用道具 舉報

9#
發表於 27/10/2004 07:01 PM | 只看該作者
I'm afraid you of wrong typing of queation
x^2 -4nx +1
=x^2 -2(x)(2n) +1
=x^2 -2(x)(2n) +(2n)^2 -(2n)^2+1
=(x-2n)^2+1-4n^2

a=-2n
b=1-4n^2
回復

使用道具 舉報

8#
發表於 27/10/2004 06:41 PM | 只看該作者
剛剛看了最上樓的題目:
1.Convert the expresion x^2-4n+1 into the form (x+a)^2 +b and write down the values of a and b in terms of n.

答案(未必對):
     x^2 - 4nx + 1
= (x^2 - 4nx) + 1
= [x^2 - 2(2nx)] + 1
= [x^2 - 2(2nx) + 4n^2] - 4n^2 + 1
= (x - 2n)^2 - 4n^2 + 1

Sub. (x - 2n)^2 - 4n^2 + 1 into (x + a)^2 + b
∴ a = -2n//
  b = -4n + 1//

完成!

[ Last edited by Echo21 on 2004-10-27 at 07:30 PM ]
回復

使用道具 舉報

您需要登錄後才可以回帖 登錄 | 加入

本版積分規則

手機版|Archiver|香港寵物小精靈村落

GMT+8, 21/2/2025 06:24 PM , Processed in 0.016904 second(s), 14 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表