香港寵物小精靈村落 論壇

 找回密碼
 加入
查看: 2027|回復: 14
打印 上一主題 下一主題

一條花了九牛二虎之力+看完答案也不懂的題目

 關閉 [複製鏈接]
跳轉到指定樓層
1#
發表於 25/4/2005 09:11 PM | 只看該作者 回帖獎勵 |正序瀏覽 |閱讀模式
ABCDEF is a convex hexagon. Each of the three diagonals AD , BE , CF bisects the area of the hexagon. Show that the three diagonals intersect at a common point.
[HINT : The areaof a triangle of sides of lengh a, b and included angle θ is equal to 1/2 ab sinθ . ]
15#
發表於 4/6/2005 12:20 AM | 只看該作者
我從題目中看到這句:「ABCDEF is a convex hexagon. Each of the three diagonals AD , BE , CF bisects the area of the hexagon.
一個十分有用的資料!
我要利用這資料來證明ABCDEF是正六邊形。
回復

使用道具 舉報

14#
 樓主| 發表於 3/6/2005 11:42 PM | 只看該作者
Originally posted by oscar at 2005-6-3 06:06 PM:

但是答案說3個對邊都能相等分割...
這就只有正六邊形才做到!


兔兒只是中三...(對不對?)
vector是CE程度的...
用別的方法吧...

[ Last edited by oscar on 2005-6-3 at 06:08 PM ]

我捉字蝨而已~XD

我是中三的.....
ps:這題數據說是中三數來的......=.="
回復

使用道具 舉報

13#
發表於 3/6/2005 06:06 PM | 只看該作者
Originally posted by 可愛的兔兒 at 2005-6-2 22:54:

但是答案說3個對邊都能相等分割...
這就只有正六邊形才做到!

Originally posted by 落雷 at 2005-6-2 23:45:

所以要先證明那是Regular Convex Hexagon
然後很簡單地就可以解決

我會用vector做一次

Let O be the centre
A,B,C,D,E,F are end points in clockwise direction
Assume AD,CF are straight lines and prove BE is straight line as well

By parrellogram law of vector
b=a+c
e=d+f

b+e=(a+d)+(c+f)
b+e=0+0
b=(-1)e
BO//OE
BE is straight line passes through O
Three lines are concurrent

兔兒只是中三...(對不對?)
vector是CE程度的...
用別的方法吧...

[ Last edited by oscar on 2005-6-3 at 06:08 PM ]
回復

使用道具 舉報

12#
發表於 2/6/2005 11:45 PM | 只看該作者
Originally posted by oscar at 2005-6-2 05:46 PM:

紅色的step表明了ABCDEF一定是一個正六邊形,
因為一個不規則六邊形的對邊不可以把兩面的面積分割成一樣的。
所以問題應該是問Regular Convex Hexagon。

所以要先證明那是Regular Convex Hexagon
然後很簡單地就可以解決

我會用vector做一次

Let O be the centre
A,B,C,D,E,F are end points in clockwise direction
Assume AD,CF are straight lines and prove BE is straight line as well

By parrellogram law of vector
b=a+c
e=d+f

b+e=(a+d)+(c+f)
b+e=0+0
b=(-1)e
BO//OE
BE is straight line passes through O
Three lines are concurrent
回復

使用道具 舉報

11#
 樓主| 發表於 2/6/2005 10:54 PM | 只看該作者
Originally posted by oscar at 2005-6-2 05:46 PM:

紅色的step表明了ABCDEF一定是一個正六邊形,
因為一個不規則六邊形的對邊不可以把兩面的面積分割成一樣的
所以問題應該是問Regular Convex Hexagon。
回復

使用道具 舉報

10#
發表於 2/6/2005 05:46 PM | 只看該作者
Originally posted by 可愛的兔兒 at 2005-6-1 21:12:

我也不太明的.....

Note that △ABX and △DEX have the same area , because together with BCDX each occupies a half of the hexagon .
Similarly , △BCY and △EFY have the same area , △CDZ and AFZ have the same area .
Hence
ab=(a'+a"")(b'+b'')
b''c''=(b+b')(c+c')
a''c=(a+a')(c'+c'') .
Multiply c to the first throughout to get abc=a'b'c+a'b''c+a''b'c+a''b''c .
Multiply a to the second throughout to get ab''c''=abc+abc'+ab'c+ ab'c' .
Multiply b'' to the third throughout to get a''b''c=ab''c'+ab''c''+a'b''c'+a'b''c'' .
Add up the three obtain 0=a'b'c+a'b''c+a''b'c+a''b''c+abc+abc'+ab'c+ ab'c'+ab''c'+ab''c''+a'b''c'+a'b''c'' .
In particular , a'b'c=0 , but c cannot be zero , hence a'=0 or b'=0 .
I either case means AD , BE , CF are concurrent .
Alternatively , we can mu;tiply the three to obtain
abca''b''c''=(a+a')(b+b')(c+c')(a''+a')(b''+b')(c''+c')>abca''b''c'' if one of a' , b' , c' is positive
Therefore , a'=b'=c'=0 and AD , BE , CF are concurrent

紅色的step表明了ABCDEF一定是一個正六邊形,
因為一個不規則六邊形的對邊不可以把兩面的面積分割成一樣的。
所以問題應該是問Regular Convex Hexagon。
回復

使用道具 舉報

9#
 樓主| 發表於 1/6/2005 09:12 PM | 只看該作者
Originally posted by 大胃 at 2005-5-31 09:58 AM:

都一星期0羅和say個答案出來啦喂:em27:

我也不太明的.....

Note that △ABX and △DEX have the same area , because together with BCDX each occupies a half of the hexagon .
Similarly , △BCY and △EFY have the same area , △CDZ and AFZ have the same area . Hence
ab=(a'+a"")(b'+b'')
b''c''=(b+b')(c+c')
a''c=(a+a')(c'+c'') .
Multiply c to the first throughout to get abc=a'b'c+a'b''c+a''b'c+a''b''c .
Multiply a to the second throughout to get ab''c''=abc+abc'+ab'c+ ab'c' .
Multiply b'' to the third throughout to get a''b''c=ab''c'+ab''c''+a'b''c'+a'b''c'' .
Add up the three obtain 0=a'b'c+a'b''c+a''b'c+a''b''c+abc+abc'+ab'c+ ab'c'+ab''c'+ab''c''+a'b''c'+a'b''c'' .
In particular , a'b'c=0 , but c cannot be zero , hence a'=0 or b'=0 .
I either case means AD , BE , CF are concurrent .
Alternatively , we can mu;tiply the three to obtain
abca''b''c''=(a+a')(b+b')(c+c')(a''+a')(b''+b')(c''+c')>abca''b''c'' if one of a' , b' , c' is positive
Therefore , a'=b'=c'=0 and AD , BE , CF are concurrent
回復

使用道具 舉報

8#
發表於 1/6/2005 07:23 PM | 只看該作者
我在school intranet問得出的answer....
Let ABCDEF counts anti-clockwisely and...
AD passes through points X,Y
BE passes through points Y,Z
CF passes through points Z,X

As...
Area of ABCD = Area ADEF -> Area of ABZX + BCZ + CDYZ + XYZ = Area of DEY + EFXY + FAX
Area of BCDE = Area EFAB -> Area of BCZ + CDYZ + DEY = Area of EFXY + FAX + ABZX + XYZ
Area of CDEF = Area FABC -> Area of CDYZ + DEY + XYZ + EFXY = Area of FAX + ABZX + BCZ

then try to prove Area of XYZ = 0 then means XYZ is located on same point.
Furthermore it means the 3 diagonals are concurrent.

我總覺得有點錯.....
回復

使用道具 舉報

7#
發表於 31/5/2005 09:58 AM | 只看該作者
Originally posted by JOHNLAM17 at 2005-5-4 09:46 PM:
過左一week la
講answer la =.=

都一星期0羅和say個答案出來啦喂:em27:
回復

使用道具 舉報

您需要登錄後才可以回帖 登錄 | 加入

本版積分規則

手機版|Archiver|香港寵物小精靈村落

GMT+8, 29/11/2024 07:58 AM , Processed in 0.014528 second(s), 14 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表