先解決第一題 此題同時涉及微分及積分 先微分以找出切線(tangent) 再判斷切線的位置 才用積分計算面積 dy/dx =3x^2+4x-1 =(x-0.21)(x+1.54) When x<-1.54,it is increasing When -1.54<x<0.21,it is decreasing When x>0.21,it is increasing The equation of tangent= y-0 / x-(-2) = 3 y=3x+6 The meeting point =x^3+2x^2-x-2 - (3x+6) =x^3+2x^2-4x-8 =(x-2)(x+2)(x+2) x=-2 OR 2 There are only two meeting points. On (-2,0) 3(-2)^2+4(-2)-1 =3 dy/dx is increasing on (-2,0), y=x^3+2x^2-x-2 is below the tangent in enclosed area. The area= 2 ∫ [(3x+6)-(x^3+2x^2-x-2)]dx -2 2 =[-(1/4 x^4) -(2/3 x^3) +(2 x^2) +(8 x)] -2 =64/3 我是升中四的,有錯出聲 [ Last edited by 落雷 on 2004-8-30 at 10:44 PM ] |