香港寵物小精靈村落 論壇

 找回密碼
 加入
查看: 2787|回復: 3
打印 上一主題 下一主題

[Math & Stat]Permutations

[複製鏈接]
跳轉到指定樓層
1#
發表於 10/9/2008 07:30 PM | 只看該作者 回帖獎勵 |倒序瀏覽 |閱讀模式
a) How many different numbers of 4 digits may be formed with the digits 0, 1, 2, 5, 6, 7, 8, if no digit is used more than once in any number? (720)
b) How many of the number formed in (a) are even? (420)
c) Find the sum of all the numbers formed in (a).

請指教(c), thanks
2#
發表於 10/9/2008 07:58 PM | 只看該作者
(1+2+5+6+7+8)x1000x(6x5x4)+(1+2+5+6+7+8)x100x(5x5x4)+(1+2+5+6+7+8)x10x(5x5x4)+(1+2+5+6+7+8)x1x(5x5x4)
=3801900

來亂
回復

使用道具 舉報

3#
 樓主| 發表於 10/9/2008 08:11 PM | 只看該作者
回復

使用道具 舉報

4#
發表於 10/9/2008 09:05 PM | 只看該作者
as 0 cannot be the thousand digit, there is 6 ways to choose the thousand digit, and 6 * 5 * 4 ways to choose the other digits.

sum of thousand digit of all the numbers = (1 + 2 + 5 + 6 + 7 + 8) * 6 * 5 * 4 * 1000

since 0 has no value, and one of the number is already taken by the thousand digit, there is only 5 numbers left which will have values for hundred digits (the position of 0 in other digit does not affect the results of this sum)

sum of hundred digit of all the numbers = (1 + 2 + 5 + 6 + 7 + 8) * 5 * 5 * 4 * 100

similarly for the other two digits

sum of ten digit of all the numbers = (1 + 2 + 5 + 6 + 7 + 8) * 5 * 5 * 4 * 10
sum of last-digit of all the numbers = (1 + 2 + 5 + 6 + 7 + 8) * 5 * 5 * 4
===========================================================
due to the poor writing skill, hope that u can understand it
回復

使用道具 舉報

您需要登錄後才可以回帖 登錄 | 加入

本版積分規則

手機版|Archiver|香港寵物小精靈村落

GMT+8, 24/11/2024 08:57 PM , Processed in 0.012562 second(s), 13 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回復 返回頂部 返回列表