Since, △CEF~△CAB, EF/AB=CF/CB i.e. c/a=CF/CB c/a=( BC-BF)/CB cBC= aBC-aBF aBF= BC(a-c) BF/BC=(a-c) /a------------------(1) △BEF~△BDC EF/DC=BF/BC c/b=BF/BC--------------------(2) From (1) & (2), c/b=BF/BC=(a-c)/a c/b= (a-c)/a ac=ab-cb-------------(*) Divide (*) by abc, 1/b= 1/c- 1/a 1/a+1/b=1/c |