香港寵物小精靈村落 論壇

標題: A maths 幫下手.... [打印本頁]

作者: orienteerer    時間: 5/1/2005 08:44 PM
標題: A maths 幫下手....
A maths~ MI(mathematical induction 數學歸納法)...

條數就咁ge... (我EMI... 得english ja... 最好唔好問我中文解番條question...)

Prove by mathematical induction that if n is a positive integer,
f(n) = 3^(2n) - 1 is divisible by 8.

我諗最好都係問問版主smallpotato226大佬 la... =.="

我係俾個 f(n)搞到唔識做姐... =.=" only幫我搞到lei舊野都ok ge la...

[ Last edited by orienteerer on 2005-1-5 at 08:46 PM ]
作者: 抹茶可樂    時間: 5/1/2005 08:58 PM
Let S(n) be the statement "f(n) = 3^(2n) - 1 is divisible by 8." .

Prove S(1) is true,
f(1)=3^(2x1) - 1 =8x1
S(1) is true.

Assume S(k) is true,
f(k)=3^(2k) - 1 =8M, where M is an integer.
  9^k  =8M + 1

Prove S(k+1) is true,
f(k+1)
=3^(2k+2) -1
=9^(k+1) -1
=9x9^k -1
=9(8M+1)-1
=72M+8
=8(9M+1)
S(k+1) is true.

By the principal of mathematical induction,
S(n) is true for all positive integers.
作者: oscar    時間: 5/1/2005 08:58 PM
Let f(n) be the proposition '3^(2n)-1 is divisible by 8'
When n=1,
   3^2-1=8  which is divisible by 8.
So, f(1) is true.
Assume that f(k) is true.
i.e. 3^(2k)-1=8M, where M is an integer.
When n=k+1,
   3^2(k+1)-1
=3^2*3^(2k)-1
=9*3^(2k)-1
=9*[3^(2k)-1]+8
=9*8M+8
=8(9M+1)
So, f(k+1) is true.
By the principle of MI, f(n) is true fpr all positive integer.
作者: 抹茶可樂    時間: 5/1/2005 09:00 PM
oscar  在 2005-1-5 08:58 PM 發表:

Let f(n) be the proposition '3^(2n)-1 is divisible by 8'
When n=1,
   3^2-1=8  which is divisible by 8.
So, f(1) is true.
Assume that f(k) is true.
i.e. 3^(2k)-1=8M, where M is an integer.
Wh ...


你入了陷阱,
f(n)=3^(2n)-1 和
f(n)=the proposition '3^(2n)-1 is divisible by 8'

是不同的 (- -")


另外,留意下我做MI的方法,有不同的。

[ Last edited by 落雷 on 2005-1-5 at 09:02 PM ]
作者: oscar    時間: 5/1/2005 09:00 PM
落雷  在 2005-1-5 20:58 發表:

Let S(n) be the statement "f(n) = 3^(2n) - 1 is divisible by 8." .

Prove S(1) is true,
f(1)=3^(2x1) - 1 =8x1
S(1) is true.

Assume S(k) is true,
f(k)=3^(2k) - 1 =8M, where M is an ...


剛剛比你慢數十秒發帖...
極無奈...
作者: 貝貝☆    時間: 5/1/2005 09:08 PM

                               
登錄/註冊後可看大圖

Sorry因為太興奮
做哂成題

[ Last edited by ericfong on 2005-1-5 at 09:19 PM ]
作者: oscar    時間: 5/1/2005 09:23 PM
ericfong  在 2005-1-5 21:08 發表:


                               
登錄/註冊後可看大圖

Sorry因為太興奮
做哂成題


你係唔係中五呀?
因為我見到你張紙上有limit...
作者: 貝貝☆    時間: 5/1/2005 09:26 PM
oscar  在 2005-1-5 09:23 PM 發表:

你係唔係中五呀?
因為我見到你張紙上有limit...


佢係我呀哥
冇讀A maths不過讀緊pure maths
佢超勁 係學校今次考試全級第1-.-
作者: oscar    時間: 5/1/2005 09:29 PM
ericfong  在 2005-1-5 21:26 發表:

佢係我呀哥
冇讀A maths不過讀緊pure maths
佢超勁 係學校今次考試全級第1-.-


你中幾呀?
我阿哥都係中六,都係讀P. Maths.的~
作者: 貝貝☆    時間: 5/1/2005 09:54 PM
中6
你呀哥邊間呀
作者: oscar    時間: 5/1/2005 09:55 PM
ericfong  在 2005-1-5 21:54 發表:

中6
你呀哥邊間呀


丘佐榮中學~
睇你個樣都唔會識嫁啦~

不過頭先o個題唔係我阿哥做...係我做...
作者: 抹茶可樂    時間: 5/1/2005 10:03 PM
ericfong  在 2005-1-5 09:26 PM 發表:

佢係我呀哥
冇讀A maths不過讀緊pure maths
佢超勁 係學校今次考試全級第1-.-


佢讀邊間的…我也聽過這個特殊例子

不過大家千祈唔好試…死緊的
作者: 貝貝☆    時間: 5/1/2005 10:07 PM
丘記都ban1 la
點會唔識呀
我呀哥個時填第2志願la都
不過派唔到ja ma唉....
我呀哥form 6轉左去新法XDDDDDDD死廢柴
作者: orienteerer    時間: 6/1/2005 12:38 AM
唔該晒咁多位先... 聽日番去咁又有hw交la...(x'mas個d...) =.="
thx for all... thx!!!~ :em48:
作者: Ron@MX    時間: 6/1/2005 12:40 AM
orienteerer  在 2005-1-6 12:38 AM 發表:

唔該晒咁多位先... 聽日番去咁又有hw交la...(x'mas個d...) =.="
thx for all... thx!!!~ :em48:


聽日先交 Christmas 功課!?..........=.=
作者: orienteerer    時間: 6/1/2005 12:51 AM
我想做好人  在 6-1-05 00:40 發表:

聽日先交 Christmas 功課!?..........=.=


...係 =.="(汗...
but x'mas  a.math要做十幾條MI+廿幾條binomal... math做廿幾條quadratic...
x'mas就梗係拎黎玩ge la... but仲得鬼閒做咩... 好彩ar sir都俾我最遲聽日先交... 都仲趕到... =="(暴汗...
作者: oscar    時間: 6/1/2005 11:13 AM
orienteerer  在 2005-1-6 00:51 發表:

...係 =.="(汗...
but x'mas  a.math要做十幾條MI+廿幾條binomal... math做廿幾條quadratic...
x'mas就梗係拎黎玩ge la... but仲得鬼閒做咩... 好彩ar sir都俾我最遲聽日先交... 都仲趕到... =="(暴 ...


唉...真係懶到爆...
臨急抱佛腳...




歡迎光臨 香港寵物小精靈村落 論壇 (https://proxy.archiver.hkpnve.pokebeacon.com/)Powered by Discuz! X3.2