標題: [M1]Binomial Theorem [打印本頁] 作者: 雪散霞花 時間: 18/4/2010 12:57 PM 標題: [M1]Binomial Theorem 1)Given that the explansion of (a+x²)[(1-2x)^n] in asending powers of x is 3-41x+bx²+...... ,find the values of the constants a,n and b
2)If n is a positive interger and the coefficient of x² in the expansion of [(1+x)^n]+[(1+2x)^n] is 75,find the value(s) of n. (HKCEE,A MATH 2002)
2)If n is a positive interger and the coefficient of x² in the expansion of [(1+x)^n]+[(1+2x)^n] is 75,find the value(s) of n. [(1+x)^n]+[(1+2x)^n] =1+nx+nC2 x^2 +..+1+n(2x) +nC2 (2x)^2+... =2+3nx+5nC2 x^2+.. ie. 5nC2=75 n(n-1)/2=15 n^2 -n-30=0 n=6 or -5 (rej)作者: mk311111 時間: 18/4/2010 07:54 PM (a+x²)(1-2x)^n =(a+x²)[1-n(2x)+(n(n-1)(2x)^2)/2-...] =(a+x²)(1-2xn+2x²n(n-1)-...) =a-2an x+2ax²(n²-n)+x²+... =a-2an x+ [2a(n²-n)+1] x²+... By comparing like terms, we have: a=3 -2an=-41 [2a(n²-n)+1]=b 剩下就該做到了吧?作者: renz 時間: 18/4/2010 10:20 PM 你計個n來看作者: mk311111 時間: 19/4/2010 01:06 AM a=3 -2an=-41