原帖由 kazuhiko 於 23/9/2006 05:40 PM 發表
determinant
= ^2 - 4(c-a)(b-c)
= 4(a-b)^2 - 4(c-a)(b-c)
= 4
= 4( a^2 + b^2 + c^2 - ab - bc - ac )
= 2 > 0 (a, b and c are real numbers and not all equal)
Therefore, the quadratic equat ...
原帖由 魔術師Chikorita 於 24/9/2006 12:03 發表
a=1, b=2, c=3的時候已經錯了......
原帖由 (ABC)ting 於 24/9/2006 12:17 PM 發表
wt do u "up"?
who tell u a=1 , b=2, c=3.
You assume that?
a, b, c are only for discriminant.
They are constant terms.
When u substitute a=1 b=2 c=3, x is still a variable.
How ...
原帖由 kazuhiko 於 23/9/2006 17:40 發表
determinant
= ^2 - 4(c-a)(b-c)
= 4(a-b)^2 - 4(c-a)(b-c)
= 4
= 4( a^2 + b^2 + c^2 - ab - bc - ac )
= 2 > 0 (a, b and c are real numbers and not all equal)
Therefore, the quadratic equat ...
原帖由 Royal 於 24/9/2006 12:59 發表
係唔係(a-b)^2一定會係正數架?
**估唔到amaths真係咁難...好彩冇修
原帖由 (ABC)ting 於 24/9/2006 14:27 發表
yes
square must be positive
原帖由 sapphire 於 24/9/2006 17:05 發表
but not for complex number
u will study this in F.6 Pure Math
原帖由 (ABC)ting 於 24/9/2006 14:27 發表
yes
square must be positive
原帖由 JOHNLAM17 於 24/9/2006 18:57 發表
erm..., I think there is a small mistake
In general, for a term ---> (a-b)² (Assuming that a and b are real numbers)
It can either be a positive number or zero.(when a = b)
But in ...
原帖由 Royal 於 25/9/2006 12:59 發表
例如今年ce出過absolute error(係十幾年o黎第一次出)
歡迎光臨 香港寵物小精靈村落 論壇 (https://proxy.archiver.hkpnve.pokebeacon.com/) | Powered by Discuz! X3.2 |