Originally posted by oscar at 2005-3-30 06:16 PM:
一條中三既數...
關於Deductive Geometry...
(b)題唔識...
請高人指點...
(第一次唔識做自己level既數...)
[ Last edited by oscar on 2005-3-30 at 06:19 PM ]
Originally posted by 小耀 at 2005-3-30 18:34:
∵BE平分咗∠ABC,∴∠ABC=∠CBE
∠ABE=∠BEC(錯角,AB//EC)
∴∠CBE=∠BEC
DC=DC(公共邊)
BY(a) ∵BD=DE
∴BDC=DEC
∴△BDC≡△EDC
[ Last edited by 小耀 on 2005-3-30 a ...
Originally posted by 小耀 at 2005-3-30 18:34:
∵BE平分咗∠ABC,∴∠ABC=∠CBE
∠ABE=∠BEC(錯角,AB//EC)
∴∠CBE=∠BEC
DC=DC(公共邊)
BY(a) ∵BD=DE
∴BDC=DEC
∴△BDC≡△EDC
俾我紅咗果句嘢...總覺得:『好 ...
Originally posted by 颱風溫黛 at 2005-3-30 18:48:
∵BE BISECTS ∠ABC
∴∠ABD=∠CBD
∵∠ABE=∠BEC (ALT.∠S AB//EC)
∴∠CBD=∠DEC=∠ABD
上半應是這樣.....
a)
since AB//EC and AB=EC.
ABCE is a parallelogram . (forget the reason)
therefore BD=DE (just remember bisect each other , forget the reason)
b)
angle BDA = angle BDC = angleEDC = 90 degrees (parallelogram ge property)
we now have
[quote]
BD = ED (from (a))
DC = DC (common)
angle BDC = angleEDC
therefore
triangle BDC & triangle EDC are congruent. (RHS)
Originally posted by oscar at 2005-3-30 06:39 PM:
你d steps又第1行已經錯...
∠ABC=∠CBE係錯...
Originally posted by 颱風溫黛 at 2005-3-30 06:48 PM:
∵BE BISECTS ∠ABC
∴∠ABD=∠CBD
∵∠ABE=∠BEC (ALT.∠S AB//EC)
∴∠CBD=∠DEC=∠ABD
上半應是這樣.....
Originally posted by oscar at 2005-3-30 07:56 PM:
真係玩死我...
呢題數陪伴著我2粒鐘....
Originally posted by smallpotato226 at 2005-3-30 19:57:
不
是 (b) part......XDXD
Originally posted by oscar at 2005-3-30 07:58 PM:
有時做數就是那麼無奈....
In triangle ABC, let a/sinA=b/sinB=c/sinC=k,where A,B and C are interior angles.
(a)show that a/sinA=a+b+c/sinA+sinB+sinC
(b)略
(c)略
i divide it into two part......
=======================
a+b+c=k(sinA+sinB+sinC)
=======================
sinA+sinB+sinC=(a+b+c)/2
=======================
therefore
a+b+c / sinA+sinB+sinC =k^2(sinA+sinB+sinC) / k(sinA+sinB+sinC)
=k
therefore = a /sin A
a+b+c / sinA+sinB+sinC = k(sinA+sinB+sinC) / sinA+sinB+sinC = k = sin A
歡迎光臨 香港寵物小精靈村落 論壇 (https://proxy.archiver.hkpnve.pokebeacon.com/) | Powered by Discuz! X3.2 |